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Abstract

Efficient traffic engineering of IP networks requires the Wtexlge of the main characteristics of the sup-
ported traffic. Several studies have shown that IP netweaiflicrmay exhibit properties of burstiness, self-
similarity and/or long-range dependence, with signifidgargact on network performance. In this work, we
propose a Markov Modulated Poisson Process (MMPP), andsteceéated parameter fitting procedure, that
is able to incorporate these characteristics over multipie scales. This is accomplished through a hier-
archical construction procedure that, starting from a MMP&® matches the distribution of packet counts
at the coarsest time scale, successively decomposes eaétPMbte into new MMPPs, that incorporate
a more detailed description of the distribution at finneretistales. The traffic process is then represented
by a MMPP equivalent to the constructed hierarchical stimect The accuracy of the fitting procedure is
evaluated by comparing the Hurst parameter, the probahilitss function at each time scale and the queu-
ing behavior (as assessed by the loss probability and avevaiging time), corresponding to the measured
and to synthetic traces generated from the inferred mo&sgeral measured traffic traces exhibiting self-
similar behavior are considered: the well-known pOct Belictrace, a trace of aggregated IP WAN traffic,
and a trace corresponding to the the popular file sharingcgioin Kazaa. Our results show that the pro-
posed model and parameter fitting procedure are very eféectimatching the main characteristics of the
measured traces over the different time scales presentan da

keywords: Traffic modeling, self-similar, time scale, Markov Modtédd Poisson Process.

1 Introduction

Traffic characterization and modeling comprise important steps towar@ssiadding and solving performance-
related problems in future IP networks. An efficient design and contit®! metworks needs to take into account
the main characteristics of the supported traffic, and therefore acaurdtéetailed measurements need to be
carried out. Traffic modeling refers to the construction of (usually sttat)amodels that capture the most
important statistical properties of the measured data. Since the work bydletiah [1] several studies have
shown that network traffic may exhibit properties of burstiness, self-giityiland/or long-range dependence
(LRD) [1, 2, 3, 4, 5, 6, 7], which have significant impact on networkigenance.

Burstiness is a traffic behavior showing noticeable periods with arrivedgeathe mean (bursts) and self-
similarity refers to the replication of statistical characteristics over a wideerahtime scales. Models like the
fractional Gaussian noise (fGN) and the fractional autoregressiggrated moving average (fARIMA) have
been proposed to capture burstiness and self-similarity but there is stil aflanalytical results, e.g., to assess
the queuing behavior.

In general, self-similarity implies LRD, and vice-versa. The impact of LRDhetwork performance has
been addressed by several authors. References [4, 8, 9pd8kadmple, study the case of a single queue and
conclude that the buffer occupancy is not affected by autocovariags that are beyond the so-called critical
time scale (CTS) or correlation horizon (CH), which depends on systeamgders such as the buffer capacity.
Similar conclusions were observed for the case of tandem queues inThilf, matching the LRD is only
required within the time scales specific to the system under study. One ofribequences of this result is
that more traditional traffic models, such as Markov Modulated PoissareBses (MMPPSs), can still be used
to model traffic exhibiting LRD. Moreover, the use of MMPPs benefits ftbenexistence of several tools for
calculating the queuing behavior and the effective bandwidths.
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In this work, we consider discrete-time MMMPs (dMMPPs) instead of cootisttime MMPPs, since they
are more natural model for data corresponding to the number of arfpad&et counts) in a sampling interval.
Note that discrete-time and continuous-time MMPPs are basically intercHaadtdaough a simple parameter
rescaling) as models for arrival processes, whenever the samplingainised for the discrete-time version is
small compared with the average sojourn times in the states of the modulatingv\taiio.

In this paper we propose a dMMPP traffic model, and its associated parditieig procedure, that is
able to incorporate traffic characteristics of different time scales. Thiscisnaplished through a construction
procedure that successively decomposes dMMPP states into new d8/BBR refining the traffic process by
incorporating the characteristics offered by finer time scales. We sttr¢ #irgest time scale by inferring a
dMMPP that matches the probability mass function (PMF) of this time scale. Agtkidiner time scale, each
dMMPP state is decomposed into a new dMMPP that matches the contribution tirihéhiscale to the PMF of
the state it descends from. In this way, a child dMMPP provides a detailedptésn of its parent state PMF.
This refinement process is iterated until a pre-defined number of time scaledegrated. Finally, a dAMMPP
incorporating this hierarchical structure is derived. The number ofsstdteach dMMPP is not fixed a priori;
it is determined as part of the fitting procedure. The accuracy of the fittoxepure is evaluated by applying it
to several measured traffic traces that exhibit self-similar behavior: éiledkmown pOct Bellcore trace, a trace
of aggregated IP WAN traffic, and a trace corresponding to the filerghapplication Kazaa. This application
was selected due to its present popularity in the Internet. We compare theaPd#ieh time scale, and the
gueuing behavior (as assessed by the loss probability and averagegwaiti), corresponding to the measured
and to synthetic traces generated from the inferred models. Our resmligisit the proposed fitting method is
very effective in matching the PMF at the various time scales and leads tearateprediction of the queuing
behavior.

Several fitting procedures have been proposed in the literature for @atirttee parameters of MMPPs from
empirical data ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], among dthel@vever, most procedures only apply
to 2-MMPPs (e.g. [12, 14, 15, 18]). This model can capture traffistingss but the number of states is not
enough to reproduce variability over a wide range of time scales. On thehathd, the fitting procedures for
MMPPs with an arbitrary number of states mainly concentrate on matching fitdibresecond-order statistics,
without addressing directly the issue of modeling over multiple time scales [137169, 21]. Yoshiharat al.
[20] developed a fitting method for self-similar traffic based on the sugdrpo of 2-MMPPs, that matches the
variance at each time scale. In this way, the resulting MMPP reproducearibace-scale curve characteristic
of self-similar processes. Our contribution is to develop a procedurenhhes the complete distribution at
each time scale (and not only the variance) in order to reproduce &elgwsalf-similar behavior.

The paper is organized as follows. Section 2 introduces self-similarity aigdriorge dependence, moti-
vating the need for a traffic model that matches the different time scalesdditheSection 3 gives the required
background on MMPPs. Section 4 describes the proposed model atidnSe presents the various steps of
the parameter fitting procedure. Section 6 briefly describes the data tisesks the numerical evaluation and
in Section 7 we discuss the obtained results. Finally, Section 8 presents theanelinsions.

2 Self-similarity, long-range dependence, and time scales

Consider the continuous-time procését) representing the traffic volume (e.g. in bytes) from time 0 up to
timet and letX (t) = Y (t) — Y (¢ — 1) be the corresponding increment process (e.g. in bytes/second)jd&ons
also the sequenck (™ (k) which is obtained by averaging (¢) over non-overlapping blocks of length, that

is

m

S OX((k—1Dm+i),k=1,2,... (1)
=1

m 1
XM(k) = ~
The fitting procedure developed in this work will be based on the agge:gadeesse ™) (k).

We start by introducing the notion of distributional self-similariy(¢) is exactly self-similar when it is
equivalent, in the sense of finite-dimensional distributionsﬂé’Y(at), forall¢ > 0 anda > 0, whereH
(0 < H < 1) is the Hurst parameter. Clearly, the proc&gg) can not be stationary. However,Yf(¢) has
stationary increments then agaif(k) = X (V)(k) is equivalent, in the sense of finite-dimensional distributions,
tom!~H X () (k). This illustrates that a traffic model developed for fitting self-similar behawigst preferably
enable the matching of the distribution on several time scales.
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Figure 1: LRD processes exhibit fluctuations over a wide range of timess(faxample: trace pOct).

Long-range dependence is associated with stationary processesidé2arow thatX (k) is second-order
stationary with variance? and autocorrelation functior(k). Note that, in this caseY "™ (k) is also second-
order stationary. The proces§(k) has long-range dependence (LRD) if its autocorrelation function is non-
summable, that isy |, 7(n) = oco. Intuitively, this means that the process exhibits similar fluctuations over
a wide range of time scales. Taking the case of the pOct Bellcore trace) iecaeen in Figure 1 that the
fluctuations over the 0.01, 0.1 and 1s time scales are indeed similar.

Equivalently, one can say that a stationary process is LRD if its spectiusrgds at the origin, that is
f(v) ~ cflv|~*, v — 0. Here,a is a dimensionless scaling exponent, that takes valugs, in); c; takes
positive real values and has dimensions of variance. On the otherdahdrt range dependent (SRD) process
is simply a stationary process which is not LRD. Such a process:had) at large scales, corresponding to
white noise at scales beyond the so-called characteristic scale or torrélarizon. The Hurst parametéf is
related witha by H = (a + 1) /2.

There are several estimators of LRD. In this study we use the semi-pai@estimator developed in [22].
Here, one looks for alignment in the so-called Logscale Diagram (LDigiwils a log-log plot of the variance
estimates of discrete wavelet transform coefficients, against scalejatermgth confidence intervals about
these estimates at each scale. It can be thought of as a spectral estihettarge scale corresponds to low
frequency. Traffic is said to be LRD if, within the limits of the confidence irdaésyvthe log of the variance
estimates fall on a straight line, in a range of scales from some initial yalup to the largest one present in
data and the slope of the straight line, which is an estimate of the scaling expoties in (0,1).

There is a close relationship between long-range dependent andnsi&f-processes. In fact, i¥'(¢)
is self-similar with stationary increments and finite variance thgik) is long-range dependent, as long as
+ < H < 1. The processX (k) is said to be exactly second-order self-sim{lgr< H < 1) if

r(n) =1/2 [(n +1)2H _op?H 4 (n — 1)2H] @)
forall n > 1, or is asymptotically self-similar if
r(n) ~n” G2 L(n) 3)

asn — oo, whereL(n) is a slowly varying function at infinity. In both cases the autocovariancayde
hyperbolically, which indicates LRD. Any asymptotically second-ordersigtilar process is LRD, and vice-
versa.

3 Markov Modulated Poisson Processes

The discrete-time Markov Modulated Poisson Process (AMMPP) is theetisitme version of the popular
(continuous-time) MMPP and may be regarded as an Markov random wadkewthe increments in each
instant have a Poisson distribution whose parameter is a function of the sthéeroodulator Markov chain.
More precisely, the (homogeneous) Markov ch@h.J) = {(Y%, Ji), £ = 0,1,...} with state spacéVy x S
isa dMMPP if and only if fork = 0,1, .. .,

) ) 0 m<n
P(Yk+1 =m, Jk-+]_ = j‘Yk =n, Jk = Z) = Y AT (4)
Dije (n’hn)! m>n
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Figure 2: Illustration of the dMMPP construction.

for all m,n € INg andi,j € S, with \;, i € S, being nonnegative real constants dd= (p;;) being a
stochastic matrix. Note that the distributionX5f, ; — Y3, given J;, = j is Poisson with mean;, so that\;
represents the mean increment of the prog¢esghen the modulating Markov chain is in stagte

Whenever (8) holds, we say th@t, J) is a dMMPP with set of modulating stat§sand parameter (matri-
ces)P andA, and write

(Y,J) ~ dMMPPs(P, A) (5)

whereA = (\;j) = (M\id;5). The matrixP is the transition probability matrix of the modulating Markov chain
J, whereasA is the matrix of Poisson arrival rates. §fhas cardinality-, we say thaty, J) is a dMMPP of
orderr (dAMMPP,). When, in particularS = {1,2,...,r} for somer € IN, then

P11 P12 --- Pir A0 ...0
P— P21 P22 ... D2 and A — 0 X ... O (6)
Pr1 Pr2 ... Drr 0 0 ... A\

and we write simply thatY,.J) ~ dMMPP,.(P,A). The stationary distribution of is denoted byr =

[m1 72,y ... Ty

4 Proposed model

The goal of this work is to propose a dMMPP model that is able to incorptedtie characteristics of different
time scales. Specifically, we work with the PMF of the packet counts at eaclstiate. This is accomplished
through a construction procedure that successively decompose®&édidtes into new dMMPPs, thus refining
the traffic process by incorporating the characteristics offered bytiime scales. We start at the largest time
scale, by inferring a dMMPP that matches the PMF of this time scale. As pitwe phirameter fitting procedure,
each time interval of the data sequence is assigned to a dAMMPP state; in thig Rl can be associated
with each dMMPP state. At the next finer time scale, each dAMMPP state is desethimto a new dMMPP
that matches the contribution of this time scale to the PMF of the state it descemdslir this way, a child
dMMPP provides a description of its parent state PMF. This refinemenegsds iterated until a pre-defined
number of time scales are integrated. Finally, a dMMPP incorporating thig¢iécal structure is derived.

We consider that the number of time scalés,is fixed a priori. Time scales will be numbered in an
increasing way, froni = 1 (corresponding to the largest time scale) te L (corresponding to the smallest
time scale). The construction process can be described through a &es wkcept for the root node, each tree
node corresponds to a dAMMPP state and each tree level to a time scale. REgtdte will be represented
by a vector indicating the path in the tree from its higher level ancestor (i.estdlte it descends from at the
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largest scalel, = 1) to itself. Thus, a state at time scdl@ill be represented by = (s, s2,...,5), s € IN.
Each dMMPP will be represented by the state that generated it (i.e. itststaez). We let dMMPPdenote
the dAMMPP generated by staf@and{1, 2, ..., Nz} the set of corresponding states, whékeis its number of
states. The root node of the tree corresponds to a virtual state, ddryoted (), that is used to represent the
dMMPP of the largest time scale= 1. This dMMPP will be called the root dAMMPP.

Thus, the dJMMPP states in the tree are characterized by

§=(s1,82,...,51),l € IN (7)

with s;11 € {1, 2,..., Ngi]} ,i=0,1,...,1—1; here,s}; denotes the sub-vector 8Qiven by(s1, s2, ..., 55),
with j < [3], andsy = (), where|s] denotes the length of vecter Note that, using this notation, a vectcan

either represent staor the dMMPP generated by Also, the time scale of AIMMPHs |3] + 1.
Figure 2 illustrates the decomposition process for the simple case of three tileg &ad two-state AMMPPs.

5 Inference Procedure

The inference procedure is represented schematically in the flowdhaidwe 3, where the following main
steps can be identified:

(i) calculation of the data sequences (corresponding to the averagenaharivals per time interval) for
each time scale, starting with the smallest one and going through an aggrgaatiess up to the largest one.

(ii) inference of the dAMMPP at the largest time scdle; 1, that matches the empirical PMF at this time
scale.

(iii) for all other time scales, in increasing ordér= 2, ..., L — 1, and for each parent AIMMPP state,
identification of the time intervals assigned to the state, calculation of the condisig PMF and inference of
the dMMPP that matches the contribution of the time scale to the PMF of the state;

(iv) finally, calculation of matriced andP of the dAMMPP incorporating the previous hierarchical structure.
Note that the dimensions of all AMMPPs are computed as part of the fittinggueoe. We will now describe
in detail the various steps of the inference method.

5.1 Calculation of the data aggregates

Having defined the time interval at the smallest time scalg,the number of time scaleg,, and the level

of aggregationg, the aggregation process starts by computing the data sequence cwdiegdo the aver-
age number of arrivals in intervals of lengtk¢, i.e., in the smallest time scale, which will be denoted by
D(L)(k), k =1,2,...,N. Then, it calculates the data sequences of the remaining time sf)ilé(ga),l =

L —1,...,1, corresponding to the average number of arrivals in intervals of lehgih“—"). This is given by

a—1
1 (1+1) - L—1—1 k—1
D(l)(k) = v (a z;) b (k +ia ))> y =1 € INo

D(Z)(k - 1)7 f;}z ?é Ny

(8)

whereWU (x) represents round toward the integer nearedote that the block length of equation (1) is related
with ¢ andl by m = o’ ~!. Note also that all data sequences have the same I@hgtid thatD) (k) is formed
by sub-sequences af ! successive equal values; these sub-sequences will be talgdences

5.2 Inference of the tree dAMMPPs

All tree dMMPPs are inferred in order to fit an empirical PMF. For the lsrgjene scale, it is the PMF of the
most aggregated data sequeno€) (k). For all other time scales, one dMMPP is inferred for each state of the
immediately higher time scale. For each dMMPP and time scale, the matched PMsemisrthe contribution
of the time scale to the PMF of its parent state. The parameter fitting procddzaetotree dAMMPP comprises
several steps, highlighted in the flowchart of Figure 3 and explained ie detgil in the next sub-sections.

An important step of the fitting procedure is the identification of the time intervalgred to each dAMMPP
state. LetE® denote the set of time intervals associated with sfate., with dMMPP. Using this notation,
the set associated with dMMPRvill be E? = {1,2,..., N}, whereN is the number of time intervals, i.e.,
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Figure 3: Flow diagram of the inference proce-
dure.

EY contains all time intervals. Starting frof?, the sets=* are successively partitioned at each time scale in
a hierarchical fashion. Thus, if stat§=nd¢ are such thats] = |f] = [ and§ # £, thenE¥ N E' = () and

U E¥ = E". Moreover, if stat&'is a parent of staté thatisi = (5, j), thenE' C ESand |J EG9) =
3=l j=1,.,Nz
E¥.

5.2.1 Calculation of the PMFs

Each dMMPP will be inferred from a PMF that represents a contributiongardcular time scale. Except
for the root dAMMPP, the contribution of a AMMPP at time scalgenerated from staté corresponds to the
deconvolution of the empirical PMFs, calculated over the set of time inteB/alat this time scalé = |3] + 1
and previous time scale— 1 = |3, i.e., f5 (z) = [p*FF+ @1 5] (x), wherep™ represents the PMF
obtained from the data sequen&(k), k € E°. Note that the two empirical PMFs are obtained from the same
set of time intervals but aggregated at different levels.

However, this may result in probability mass at negative arrival ratetheodMMPP, which will occur
whenevetnin {z : ¥l (z) > 0} < min {z : p5I*+! (z) > 0}. To correct this, the dMMPPwill be fitted to
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Fo (@) = fla + ) ©)
wheree® = min (O,min {x L f3(2) > O}) which assureg® (z) = 0, z < 0. These additional factors are
removed in the next step of the inference procedure.

5.2.2 Inference of the parameters

The first step in the inference of the dMMPParameters, is the approximation ff, by a weighted sum of
Poisson probability functions. This is based on an algorithm that pragegssubtracts a Poisson probability
function from f¥. The most important steps of this algorithm are depicted in the flowchart ofé#yand will
be explained in the next paragraphs.

Let then'” Poisson probability function, with measy,, be represented hy, () and define:} («) as the

difference betwgef(@ and the weighted sum of Poisson probability functions at#tidgteration. Initially,
we sethi(z) = f*(x) and, in each step, we first detect the maximunipfz). The corresponding-value,
©n = argmax h? (z), will be considered the!” Poisson rate of the dAMMPPWe then calculate the weights

of each Poisson probability functiowy = [w§,,ws,, ..., ws,], through the following set of linear equations:
n
=D wings (o) (10)
j=1

for m = 1,...,n. This assures that the fitting betwegf(x) and the weighted sum of Poisson probability
functions is exact ap?, points, form = 1,2,...,n. The final step in each iteration is the calculation of the
new difference function

T_;+1 f§ Z wjnglp (11)

The algorithm stops when the maximum/gf(z) is lower than a pre-defined percentage of the maximum of
f%(z). At this point, the number of states of the AIMMPR;, is made equal ta.
After Nz has been determined, the parameters of the dWW, Af),j =1,2,..., Nz} are set equal to

71'35 = wag and )\f = 5. (12)

Note that the number of states of each dMMPP depends on the level sdeg@amployed in the approxi-
mation of f¥ by the weighted sum of Poisson probability functions.

The next step of the parameter inference procedure is to associagehatrae scale, one of the dAMMPP
states with each time interval. Recall that the set of time intervals associated willPEMs £ and that the
data sequences aggregated at time ddasvea’ ! successive equal values called |-sequences. The goal here
is to partitionE¥ into subsetsZ(%7) j = 1, ..., N;. The state assignment process considers only the first time
interval of each I-sequence, definediby: o S7“)(14: — 1)+ 1,k € IN,i € E°. The state that is assigned to

l-sequence is calculated randomly according to the probability veétoti) = {Hf (i),...,0%. (z’)}, with

;. gz (DU (@)
0; (i) = = 13
n( ) Z;Vil g/\? (D(|§1+1)(Z')) ( )

wheren = 1, ..., Nz. Recall that)\f represents the Poisson arrival rate of jHestate of dAMMPP andg) (y)
represents a Poisson probability distribution function with meaihe elements of this vector represent the
probability that the statg had originated the number of arrivals’ (k) at time interval from time scalé.

After this step, we infer the dMMPPtransition probabilitieSpfd, with o,d = 1,..., Nz counting the
number of transitions between each pair of states.® Jfrepresents the number of transitions from state
stated of the AMPPP, then we let

pid: %,O,dzl,...,Ng (14)



The transition probability and the Poisson arrival rate matrices of the dMMRPthen given by

P11 Pi2 Pin; A 0O ... 0
. S S S ~ 3 .
pi— | Pz P2 - Pon; and A5 — 0 A3 ... 0 + 6T (15)
Na PN o PN, 0 0 ... A%,

The diagonal matrix of the steady-state probabilities will be designatddby

5.3 Construction of the equivalent AIMMPP model

In this Section we construct a dAMMPP equivalent to the tree structure bffeiR& derived in previous sections.
The goal is to incorporate in the model the level of detail given by the fiirast scale. Thus, the equivalent
dMMPP will have a number of states equal to the number of states in the finestdideeof the tree structure,
L. These can be identified by paths on the tree structure of thefesn(s,, so, ..., s1,). Note that each state
results from its associated states on the corresponding$ath= (s1, s2, ..., si+1),7 =0,1,..., L—1of the
dMMPPi. Thus, the states of the equivalent dMMPP will have Poisson rates wii¢che@sum of the Poisson
rates of its associated states in the tree structure, i.e.,

L—-1
M= YA (16)
§=0

The transition between each pair of states is determined by the shortest pla¢htiee structure, going
through the root dMMPP, that joins the two states. Any pair of states dédo@m one or more common
dMMPPs. The first one, at the time scale with highewill be denoted bys A ¢ = (s1, 82, ..., Sk) Where
k=max{i:s;=t;,j=1,2,..,i}.

We first consider the case 8t~ ¢. The probability of transition frong'to ¢, Pz is given by the product of
three factors. The first factor accounts for the time scales whaneli have the same associated states and is
given by

|EAE]—1 75 _
bar=q M P AT 20 an

J
1,|5AE =0

The second factor accounts for the transition in the time scale whane 7 are associated to different states

of the same dMMPP, which correspondSpﬁ‘iﬁ;ﬂH,t‘mH. The third factor accounts for the steady-state

probabilities of states associated:tim the time scales that are not commorstand is given by

L—1 .
t i
ver= I = (18)
j=|3At]+1

where an empty product is equal to one.
Finally, for 5+ t,

_ SAT

pg’{’— ¢§vip§\s‘/\ﬂ+1’t§/\t"+1w§f' (19)

In cases = ¢, the transition probability is simply

Psi= Pz (20)

6 Overview of the traffic traces

Two different traces of aggregated IP traffic were selected to testtheacy of the proposed fitting procedure:
(i) the well known and publicly available Bellcore pOct LAN trace [1] andditface measured at the backbone
of a Portuguese ISP ADSL network, characterizing the downstreamméitaccess traffic of approximately 65
simultaneous users. A third trace was also considered, correspondhmgdownstream traffic from 10 users
of the file sharing application Kazaa, a protocol running over TCP. Tacetwas measured at the premises of
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Figure 5: Autocovariance of packet counts, trace Figure 6: Second order Logscale Diagram, trace
pOct. pOct.

the same Portuguese ISP and its inclusion is due to the fact that an increasiagtage of the overall Internet
traffic belongs to peer-to-peer protocols of the same type as KazaaallFaur measurements, the traffic
analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM and running Wimip, and recorded the
arrival instant and the IP header of each packet. The main charticteofall selected traces are described in
Table 1.

All traces exhibit self-similar characteristics: taking trace pOct, for exantipdeanalysis of its autocovari-
ance function (Figure 5) lead us to suspect that it exhibits LRD behalierto the slow decay for large time
lags. This is confirmed by the scaling analysis, sincejthealues in the logscale diagram are aligned between
a medium octave (7) and octave 14, the highest one present in datee(B)gur similar analysis was made for
the other traces, also revealing the same LRD behavior.

7 Numerical Results

We assess the suitability of the proposed MMPP fitting procedure usingsesigeria: (i) comparing the Hurst
parameters of the original and synthesized (according to the paramégersdrfor the resulting dMMPP) data
traces; (ii) comparing the PMFs of the packet counts in different time saa&silated also from the original
and synthesized traces and (iii) comparing the queuing behavior, in tepaskdt loss ratio (PLR) and average
waiting time in queue (AWT), through a trace-driven simulation using thosegras inputs. All simulations
were carried out using a fixed packet length equal to the mean packgh lehthe trace. For all traces, the
sampling interval of the counting process was chosen to be 0.1s and iffeeend time scales were considered:
0.1s, 0.2s and 0.4s. Larger aggregation levels were also considéiedoad fitting results. For each trace, the
estimation procedure took less than 2 minutes, using a MATLAB implementatiomguimthe PC described
above, which shows that the procedure is computationally very efficient.

In order to verify that the proposed fitting approach captures the tta®fiz behavior, we compare in Table
1 the Hurst parameters estimated for the original and dMMPP fitted traffieaich one of the three selected
data traces. The LRD estimator that was used is the Logscale Diagram, gedituSection 2, and Table 1
also includes the range of time scales where the wavelet coefficients fodimaight line, written in parenthesis
near to the corresponding Hurst parameter value. As we can seeiglaevery good agreement between the
Hurst parameter values of the original and fitted traffic, so LRD behadems to be well captured by this
fitting approach.

The next evaluation criteria is based on the comparison between the PMlks ofiginal and dMMPP

Trace name Capture period Trace size| Mean rate| Mean pkt size
(pkts) (bytels) (bytes)

pOct Bellcore trace 0.5 million | 322790 568

ISP 10.26pm to 10.49pm, Octob&g!*2002 | 0.5 million | 583470 797

Kaaza 10.26pm to 11.31pm, Octob@g!*2002 | 0.5 million | 131140 1029

Table 1: Main characteristics of measured traces.
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fitted traces, for different time scales. Starting with trace pOct, we seeffgures 7, 8 and 9 that there is a
good agreement between the PMFs of the original and dMMPP fitted tfacéise smallest, intermediate and
largest time scales. This is achieved with a dMMPP having 81 states. Fot$Rdhe resulting dMMPP has
74 states and the comparison between the PMFs of the original and fittesl shown in figures 10, 11 and 12
for the smallest, intermediate and largest time scales, also reveals a goethagteFinally, for trace Kazaa
the resulting dAMMPP has 38 states and the PMFs of the original and fitted,tsd®vn in figures 13, 14 and
15 for the smallest, intermediate and largest time scales, also reveal a geedthagt. Note that, as stated
before, the number of states is directly related to the level of accuradyirutiee fitting task that approximates

Trace original fitted

pOct | 0.846 (4,11)| 0.859 (4,11)
ISP | 0.954 (4,10)| 0.956 (4,10)
Kazaa| 0.917 (8,12)| 0.897 (6,12)

Table 2: Comparison between Hurst parameter values
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the empirical PMF at each time scale by a weighted sum of Poisson probahilitifdos. So, there is always
a tradeoff between the number of states of the resulting dMMPP and theentéa| of accuracy.

We now verify if the close match obtained in the Hurst parameter values andmiMRs at each time scale
is enough to guarantee a similar queuing behavior between the original &naffithe fitted models. For each
selected trace we compare the PLR and AWT values obtained throughdtraee-simulation of the original
and dMMPP fitted traces. Two different sets of utilization ratios were us#tkisimulations: for traces pOct
and Kazaa, we used= 0.7 andp = 0.8 and for trace ISP the selected values were 0.8 andp = 0.9. This
is due to the lower burstiness of the ISP traffic, which leads to lower paudas for the same link utilization.
From figures 16 and 17 it is possible to see that, for trace pOct, PLR ioeliewery well approximated by
the equivalent dMMPP for both utilization ratios, while the agreement of th& AMves is less accurate
specially for higher utilization ratios. For trace Kazaa, the results are teelpic figures 18 and 19 and for
trace ISP the results are illustrated in figures 20 and 21. For both traeegyrgement between the PLR curves
corresponding to the original and fitted traces is good. However, agilization ratio increases the deviation
slightly increases, because the sensitivity of the metrics to differencestirates under comparison is higher.
Regarding AWT, the agreement between the curves correspondingdddiral and fitted traces is also good,
specially for higher utilization ratios.
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As a final remark, we can say that the proposed fitting approach psgiddose match of the Hurst
parameters and probability mass functions at each time scale, and this agiremreals itself sufficient to drive
a good queuing performance in terms of packet loss ratio and aver@gewiane in queue. The computational
complexity of the fitting method is also very small.

8 Conclusions

We proposed a MMPP, and its associated parameter fitting procedurd, isfsible to capture self-similarity
over a range of time scales. This is accomplished through a hierarchitgttection procedure that, starting
from a MMPP that matches the distribution of packet counts at the cotirmesicale, successively decomposes
each MMPP state into new MMPPs, that incorporate a more detailed descapti@distribution at finner time
scales. The traffic process is then represented by a MMPP equit@lidrat constructed hierarchical structure.
The accuracy of the fitting procedure was evaluated by comparing the plarameter, the probability mass
function at each time scale and the queuing behavior (as assessed hgstheoloability and average waiting
time), corresponding to the measured and to synthetic traces generateth&dnferred models. Several
measured traffic traces exhibiting self-similar behavior were consid#dreavell-known pOct Bellcore trace, a
trace of aggregated IP WAN traffic, and a trace corresponding to theoghdar file sharing application Kazaa.
Our results show that the proposed model and parameter fitting procaduvery effective in matching the
main characteristics of the measured traces over the different time soadespin data.
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